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5. Concluding remarks 

The theory of time-dependent X-ray Bragg diffraction 
by a crystal is developed allowing for the effects of 
the partial time and space coherence of the incident 
beam. It is found that, for the case where the input 
wave is plane (or is the incoherent superposition of plane 
waves) and the amplitude is a 6 function in time (the 
ultrashort time pulse approximation), the instantaneous 
crystal reflectivity is a smooth temporal function. Fur- 
thermore, in the limit where the observation time t is 
much longer than the characteristic value to [to = A/27rc 
and to = (#oC) -1, respectively, for the dynamical and 
kinematical Bragg diffraction], the crystal reflectivity 
tends to the value for the integrated Bragg reflectivity 
calculated by CDKT. If the input X-ray pulse profile is 
a pseudo 6 function in both time and space, the temporal 
crystal response has a functional dependence identical 
with that of the spatial distribution of the diffracted 
intensity under the conventional Bragg diffraction of the 
X-ray beam with the lateral width toe. 

In the general case, where the input X-ray pulse is 
partially coherent in time and space, calculations of 
practical interest can be carded out with the formulae 
(20)-(22). The important conclusion following from this 
study is that the temporal crystal response is determined 
by the characteristic length when the input duration 
length is much smaller than the latter. So, taking into 
account that for the X-rays the typical values are A/27r 
31.tm and /Zo ~- 60~tm, to ~- 10fs and to ~- 200fs 
for the dynamical and kinematical Bragg diffraction, 
respectively. The last value of to for the kinematical 
Bragg diffraction is comparable with the time duration 

of ultrashort X-ray pulse sources by the interaction of 
intense laser pulses with solid targets (Uschmann et 
al., 1995). The present calculations will have potential 
applications in time-dependent X-ray optics when X-ray 
pulse sources with a comparable time duration come to 
be used in practice. 

Also notice that thermal neutrons may also be used in 
place of X-rays and offer another opportunity to observe 
the time-delay effect since in this case the value of the 
characteristic time is increased. 

The authors are pleased to thank Dr R. Hutcheon 
for a preliminary reading of the manuscript and valu- 
able remarks, and Dr S. M. Durbin and Professor R. 
Colella for very fruitful discussions and drawing the 
authors' attention to problems of the time-dependent 
Bragg diffraction of thermal neutrons and synchrotron 
radiation by resonant nuclei in a crystal. 
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Abstract 

In the triclinic case, structures that can be described in 
terms of arrangements of a set number of possible 
subunits occupying the unit cells of an underlying lattice 
may be enumerated by their derivative lattice index n and 
stoichiometry, e.g. XmY(,-m) for two types of subunits. 
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This process involves counting the number, H(n, m), of 
such patterns possible on the frame of the colour lattice 
group, followed by the elimination of any patterns that 
belong to a derivative lattice of lower index. The 
resulting numbers, K(n, m), then have the property 

K(n,m) < (1/n)[,~] < H(n,m) 

where [~] is the binomial coefficient. These expressions 
are equalities if n and m are mutually prime. H(n, m) and 
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K(n,  m) are tabulated for all colour lattice groups n < 20 
and all corresponding values of m. The method may be 
extended to a larger number of subunit types by a simple 
change to the figure-generating function. 

Introduction 

This series of papers on the enumeration of derivative 
lattices (Rutherford, 1992, 1993), together with some 
parallel work on graph theory approaches to the bond- 
valence distribution in solids (Rutherford, 1990, 1991), 
represents an attempt to explore the potential that 
mathematical chemistry, i.e. the application of g~aph 
theory and combinatorics to chemistry, holds for the 
enrichment of crystallography. 

One important concept of combinatorics is the 
generating function, where the number of distinct objects 
with a given property is simply the coefficient of one 
term in the expansion of that function. The application of 
power-series generating functions to isomer-counting 
problems in chemistry derives mainly from Polya (1937). 
Generating functions have the advantage, besides 
elegance and compactness, of their usefulness in deriving 
statistical information on, and asymptotic estimates of, 
the number of isomers (or other geometric objects) 
involved in the enumeration. In order to construct an 
equivalent theory of derivative lattices, we shall have to 
consider two types of generating functions, the Polya 
type and the Dirichlet type (Hardy & Wright, 1979). 

Derivative lattices (Billiet & Bertaut, 1983) arise in 
practice both as real lattices (commensurate superlattices) 
and as reciprocal lattices, in the consideration of phase- 
determining techniques, and, in particular, as problems of 
rational dependence between large structure factors. In 
fact, it was originally to gain statistical information for 
a test of such rational dependence that Dirichlet genera- 
ting functions were introduced to crystallography 
(Rutherford, 1992). The generating functions were 
derived to provide, for each Patterson symmetry of the 
basic lattice, the number of derivative lattices of equal 
index with the same point-group symmetry. A second 
paper (Rutherford, 1993) extended this approach of using 
Dirichlet functions to an enumeration of derivative 
lattices, now in the general case only, but in terms of 
their classification by colour lattice group (Harker, 1978) 
rather than just index. The present paper is intended 
to show that it leads to a much improved method of 
attack on those structural enumerations recognized by 
McLarnan & Moore (1981) as lattice-colouring problems 
for which Polya's method may be applied. 

Polya enumeration in crystallography 

One, aspect of mathematical chemistry that has been 
extensively investigated is the application of Polya's 
theorem (Polya, 1937; Polya & Read, 1987), i.e. that the 
total pattern inventory is represented by the coefficients 

in the expansion of the cycle sum: 

S = ~_,F(d)and/d, 
aln 

where the sum is over the divisors d of n and F d is the 
cycle sum coefficient, i.e. effectively the number of 
locations in the frame, on which the patterns are 
arranged, which fall on a cycle of minimum length d 
with respect to the frame symmetry group. Polya & Read 
(1987) give an extensive bibliography of results for 
molecules and similar finite systems and Fujita (1990) 
gives numerous more recent references. However, its 
application to periodic systems such as crystals and 
crystal surfaces has received scant attention. McLaman 
& Moore (1981) reviewed the work done at that time in 
the area of crystal structure in general; even here, 
however, it is clear that the major interest has been in 
finite molecules and clusters. The extension of the 
approach to what McLaman & Moore (1981) describe as 
colouring problems has largely been ignored and, in fact, 
most of the relevant work to date has been done by these 
authors themselves (Moore & Araki, 1976; McLarnan, 
1978, 1981). As McLaman & Moore (1981) point out, 
there is a basic difficulty in enumerating the arrange- 
ments that may occur for this type of problem, in that 
Polya's theorem must normally be based on a specific 
algebraic structure, the frame group, which is the 
symmetry group of the molecular graph or coordination 
polyhedron in finite examples, but which corresponds to 
a specific unit cell in the crystallographic case. The unit 
cells that arise in turn represent derivative lattices of 
index n of some underlying lattice, on which the possible 
distinct structures comprise arrangements of N colours 
representing structure elements. These colours may be 
arranged, with a particular colour occupying a lattice 
point for each structural element that may occur in that 
site (basis lattice unit cell), according to their full 
permutation group (N < n). This is the situation, rather 
than the more restricted case of the colour symmetry 
group for which n -- N, that is relevant to most counting 
problems involving structural derivative lattices. 

Essentially, the reason for McLarnan & Moore's 
(1981) difficulties was that at the time each derivative 
lattice had to be considered separately, and there was no 
general method of enumeration of either the derivative 
lattices involved or their individual colour lattice groups. 
In fact, on the question of the number of distinct 
derivative lattices of index n for a given basic lattice, the 
required relationships were established in general by 
Bertaut & Billiet (1979) and the triclinic case was studied 
in detail by Billiet & Rolley-Le Coz (1980). The latter 
expressed their results in terms of restrictions on the 
possible integral elements of standard triangular trans- 
formation matrices of determinant n. This led Rutherford 
(1992) to introduce Dirichlet generating functions into 
crystallography to provide a more convenient tool in the 
enumeration of such derivative lattices. 
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Although the coloured symmetry groups have been the 
subject of extensive research for a number of years, the 
specific result relevant to our second question, namely 
the possible for/ns taken by the translational subgroups in 
N colours, was only resolved by Harker in 1978. He 
recognized that in three dimensions they were the 
Abelian groups of stable form Cps x Cfg x Cf,* of order 
N = f a g 2 h , f ,  g and h being positive integers. Soon after, 
the number of such groups was derived by Kucab (1981). 
However, it was only recently that the details of the 
distribution of the non-isomorphous colour lattice groups 
among the derivative lattices of equal index were worked 
out (Rutherford, 1993). 

It now seemed appropriate to examine the possibility 
that this crystallographic colouring problem might be 
freed from the limitations imposed by dealing with each 
unit cell individually. It is the purpose of this paper to 
show that this is indeed the case, and to indicate the 
further problems that must be overcome in its solution. 
This exposition will assume two colours only, i.e. it will 
apply the figure-generating function 

ae = (x d + yd), 

where the coefficient of the term in xby ~-° gives the 
number of patterns with b occurences of the first colour. 
The extension of the method to any number of colours 
N < n involves only a straightforward change to the 
figure-generating function. 

Method 

The method followed consists of four steps, namely: 
(1) The enumeration of the derivative lattices of a 

given lattice by index (number of points of the basic 
lattice in each unit cell of the derivative lattice) using 
arithmetic functions. It is possible to include crystal 
symmetry constraints in this enumeration, but for 
simplicity this paper will deal only with the asymmetric 
case. The details of this procedure have already been 
published (Rutherford, 1992). 

(2) The identification of the various algebraic 
structures (colour lattice groups) that may occur for 
derivative lattices of a particular index (Harker, 1978) 
and the partition of the total number of derivative lattices 
for that index, as found in the previous section, by 
structure (Rutherford, 1993). 

(3) The application of Polya's theorem to provide the 
total number of patterns for each algebraic structure 
present, categorized according to the number of points of 
each colour making up the derivative lattice. 

(4) The elimination from the count for that index of 
patterns that correspond to a derivative lattice of lower 
index, that index being a factor of the one under 

* Strictly speaking, the colour lattice groups are infinite Abelian 
groups and these finite groups are their torsion subgroups; however, we 
shall continue to refer to the finite groups as the colour lattice groups 
since it is their properties that are all important to the analysis. 

DERIVATIVE LATHCES. lII 

consideration. Such cases will have been already counted 
under that lower index. 

As an example of this, we may consider the 
arrangement of eight figures, four black and four white, 
on the frame C4 x C 2. We then find Polya's formula 
predicts 

[./4 H(n,  m) = (1, n) ~_, F a Lm/a j 
dln,m 

- '- E F.F /4 
- 8 L4/#] dl8,4 

= { ( 1  x 7 0 + 3 x 6 + 4 x 2 )  

= 12. 

Here din, m implies d is a divisor of both n and m, and 
[~] is the binomial coefficient. These 12 pattems are 
illustrated in Fig. 1. However, of these 12, five (a to e in 
Fig. 1) produce derivative lattices of small true index 
when infinitely repeated in two or more dimensions, 
while only the remaining seven produce true index eight 
derivative lattices. 

As in the previous papers, the method will be 
illustrated by presenting first the relatively simple one- 
dimensional case and extending the arguments to two 
and finally three dimensions. 

Multiplieative number theory 

The reader is referred to the previous papers (Rutherford, 
1992, 1993) and references therein, particularly Hardy & 
Wright (1979), for a detailed discussion of the relevant 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) O) (k) (l) 

Fig. 1. Patterns that may be arranged on C 4 X C2. The corresponding 
derivative lattice indices are: (a)-(c) 2; (d)-(e) 4; Or)--(/) 8. 
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multiplicative arithmetic functions and Dirichlet series. 
Briefly, we shall be interested in Dirichlet series of the 
type 

oo  

F(s) = ~ otnn -~, 
n=l 

where F(s) is the generating function of some t~,,, the 
corresponding arithmetic function. Here a,, simply 
enumerates some property associated with the natural 
number n, and in such cases the variable s has no real 
significance. The series of interest are 'multiplicative' in 
the number-theory sense, i.e. oe n are multiplicative over 
the primes. In other words, 

OlmOl n = Olmn , 

provided m and n have no common factor. We shall use 
this multiplicative property in constructing the required 
arithmetic functions. 

We shall, however, require two results not included 
previously. The fu'st is the M/Sbius inversion formula, i.e. 

implies 

F(n) = ~ G(d), 
din 

G(n) = ~ lz(d)F(d), 
din 

where F and G are multiplicative arithmetc functions, 
din again indicates d is a divisor of n, and /z is the 
M6bius function /z(n), defined as: / z ( a )=  1 if a = 1; 
/z(a) = ( - 1 )  r if a is the product of r distinct prime 
factors, i.e. if a is square-free (contains no repeated 
factors);/z(a) = 0 otherwise, i.e. if a is divisible by the 
square of a prime. 

The second requirement is to introduce the Euler 
totient function, ~0(n), which is the number of positive 
integers less than and mutally prime to n. For example, 
~0(5) = 4, the number of elements of { 1,2,3,4}, and 
q9(6) = 2, for {1,5}. ~o(1) is defined as unity, qg(n) is 
multiplicative in the primes; for example, the relevant set 
for n = 15 is { 1,2,4,7,8,11,13,14}, and so 

~0(15) -- 8 = 2 x 4 = ~3)q9(5). 

Since ~0(n) is a multiplicative arithmetic function, there 
ought to be a corresponding Dirichlet-series-generating 
function, which indeed proves to be: 

oo 

( ( s -  1)/((s) = ~ tp(n)n -~, 
n = l  

where ((s) is the Riemann ( function. However, if we use 
the general formula for a product of Dirichlet functions, 
namely 

F(s)G(s)= =~{d~t f(n/d)g(d))n-S, 

we can deduce that Uq(s)((s-  1) generates 

Ix(n/d)d 
din 

and thus establish the identity 

~o(n) = ~ lz(n/d)d. 
din 

For example, 

~0(12) =/z(12)  x 1 +/z(6)  x 2 +/z(4)  x 3 +/z(3)  x 4 

+ #(2) x 6 +/z(1)  x 12 

= 0 x  1 + 1  x 2 + 0  x 3 + ( - 1 )  x 4 

+ ( - 1 )  x 6 +  1 x 12 

= 4 .  

One-dimensional case 

The number of one-dimensional lattices of index n is one 
only for each n and is therefore enumerated by 

oo  

( (s )  = y ]  1 x n -s .  
n=l 

Since there is only one lattice for each n, there can be 
only one structure, which is that of the cyclic group C n. 
This is consistent with the number of such groups also 
being enumerated by 

oo  

((s) = ~ 1 x n -s. 
n=l 

Polya's theorem is simple to apply in the case of C, for a 
specific n; however, what we seek is an expression for 
the cycle sum for such a cyclic group for general n. The 
cycle sum takes the form 

S = ~ F(d)and/d, 
din 

where the sum is over the divisors d of n, there being 
only one cycle C a for each divisor. Now it is known that 
we can write F(d) as the totient function ~ d )  but, 
equivalently, we may use the fact that each of the d 
elements of a cycle Cd must either count in the sum F(d) 
for the Cd or in one of its factors, e.g. F(b); bid. Also, all 
the cycles present can be broken down in terms of the 
separate prime factors involved, i.e. the structure is 
multiplicative in the sense Cmn = C m x C,, provided m 
and n are mutually prime. 

This tells us that we seek for the cycle-sum coefficient 
F(d) a multiplicative function which has the property 

d = y'jF(b). 
bid 

The technique of M6bius inversion then gives 

r(d) = ~ lz(d/b)b 
bid 
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for the cycle-sum coefficient. This means the cycle sum 
becomes 

or, alternatively, 

S = ~_, tp(d)and/d. 
din 

Now, for an arrangemet involving m points of one colour 
and (n - m )  of the other, we simply substitute (x d + yd) 
for each a a and combine the coefficients of xmy (n-m) in 
the resulting binomial expansion, to give the total pattern 
inventory 

r.i<;I ( l /n)  ~ ~o(d)[.mld ] • 
dln,m 

There are two important things to be noticed about this 
formula. The first is that only those terms where dim, 
(n - m), contribute to the total number of arrangements 
for given m. The second is the factor 1/n, which arises 
because the cycle-sum approach generates each pattern n 
times identically except for a shift of origin. In order to 
extend this approach to three colours, we would apply 
the figure-generating function 

aa = (xa + ya + z d) 

and so on. 
This completes the third step of the method for this 

case. The need for a fourth step arises from the infinite 
(or quasi-infinite) repetitive character of the crystal 
lattice. We can illustrate this distinction, for what is 
otherwise an identical cyclic frame group C n, by the 
common example of coloured beads threaded on a 
necklace. There, although the finite sequences (bwbw) 
and (bwbwbw) have the same stoichiometry, they 
represent distinct necklaces of frame groups C a and C 6, 
respectively, while the sequences (bwbw)~ and 
(bwbwbw)o o from an identical linear chain, for which 
the true representation is (bw)o o, of frame group C 2. 
Thus, the pattern inventories derived above will contain 
elements of true index d, din, m, for at least some of the 
possible values of d. 

If we write the number of elements of the total pattern 
inventory as H(n, m) and that of the patterns of true 
index n as K(n, m), we can then use the identity 

n(n, m) = F_, K(n/d, m/d) 
dln,m 

to describe the fourth step as a recursive process: 

K(n, m) = n(n, m) - ~ K(n/d, m/d). 
d(> 1)ln,m 

For the one-dimensional case, we have 

H(n,m) = (l /n)  ~ ~o(d) [n/d]" Lm/dJ ' 
din 

however, in this particular case there are no complica- 
tions in applying the inclusion/exclusion principle to the 
patterns that occur, which then allows us to use the 
M6bius inversion to carry out the summation involved in 
calculating K(n, m); 

K(n, m) = F_, tz(d)H(n/m, m/d) 
dln,m 

= (l /n)  y~ Iz(d)d I ~ tp(b)[,~/b~] }.  
dln,m t bdln,m ~" " 

As an application of this formula, consider six black and 
six white figures arranged on the periodic frame C12. 

K ( 1 2 , 6 ) - ( 1 / 1 2 )  ~ tz(d)d I ~_, qg(b)[162//bd~]}. 
d112,6 tbdll2,6 

Possible values of d and b, respectively, are: 

(1,1); (1,2); (1,3); (1,6); (2,1); (2,3); (3,1); (3,2); (6,1). 

The sum therefore becomes 

(1/12)(1 x 1{ ['~] + [6] + 2[4] + 2[~]} 

+ ( -  1) × 2 { [~] + 2 [~] } + ( -  1) x 3 { [4] + [~] } 

+ 1 × 6{ [~]}) = 75. 

In the case of a finite figure, the corresponding cycle sum 
would be simply the first grouped term: 

(1/12){[ 12 ] + [~] + 2[ 4 ] + 2112]} =80 .  

This shows that, for this example, five patterns of the 80 
that occur for a finite frame group have a smaller true 
index when applied to a lattice. These comprise one of 
index 2, one of index 4 and three of index 6. 

T w o - d i m e n s i o n a l  case 

Here, the function that enumerates the lattices of index n 
is 

oo 

((s)((s - 1) = ~_, trl (n)n -s, 
n=l 

where a 1 (n) is the sum of the divisors of n. The number 
of distinct algebraic structures in two dimensions is given 
by the expansion of ((s)((2s). Now we have to identify 
how the overall al(n ) lattices are distributed over the 
possible structures. This breakdown depends on a new 
arithmetic function q2(n) which is generated by 
((s) × (-l(2s), and in fact the number of lattices with 
colour lattice group Cfg × Cf can be shown, by suitable 
manipulation of the generating functions, to be 

Y~(g /d)q2(d). 
dig 
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Now, most of these lattices correspond to structures with 
f - - 1 ,  i.e. they have identical structures to the one- 
dimensional case. However, in order to take into account 
the truly two-dimensional structures, we must now 
examine in detail the structure of the Abelian group 
Cfg x Cf, of order n - - f2g .  For such groups, the number 
of subgroups of the form Cablfg X Cal f is multiplicative, 
and therefore it is sufficient to determine the relevant 
structure for each prime factor of n. Let us call this 
structure Cp~ x Cp, and designate subgroups of this 
Cp, x Cp~, where fl >_ ct, f >__ 8, 8 _ y and oe _> Y. Then, 
ff 8 > a, the number of such subgroups, N(Cp~ x Cp~), is 
simply p"-~'. However, if 8 < c~, such subgroups are also 
subgroups of the single subgroup of structure Cp, x Cp,. 
This allows us, for cases where 1 _< (y + 8) _< o~, to treat 
this problem as equivalent to the number of lattices of 
that structure as dealt with above, namely 

N(Cp x Cp~,)= E q2(d)[P~'+8/d] 
d[pr+~ 
y+8 

= E q:z(pi)p ×+'~-i 
i=0 

= (p + 1)ff '+8-1, 

N o w ,  

Fd : ~o(d)~ I-[ P7 i I-I (pj }- l)pj~j-1} • 
( piSi ~f pjSJ lf 

Polya's theorem may now be applied; however, the final 
step of identifying the patterns of lower true index is now 
more difficult, since the M6bius function method no 
longer applies and we must carry out the recursion over 
the subgroups Gd of the colour lattice group G: 

K ( n , m ) - H ( n , m ) -  ~ K(n/d,m/d) d(> 1)ln, m. 
GdlG 

Here, d is the index of the subgroup in G; its order, and 
the index of the corresponding lattice, is (n/d). 

For example, for the group C 6 x C 2, n = 12 and 
m -- 6, we have: 

K(12, 6) = H(12, 6) - ~ K(12/d, 6/d) 
d 

Gd(d > 1) ]C 6 × C 2. 

Possible values of d are 2, 3 and 6 and therefore G a can 
only be C6, C2 x C z or C 2, there being no C4 subgroup. 

since q2(p i) is non-zero only for i = 0 or 1. Also, for 
8 < a and ct < (y + 8) < 2a, the number of subgroups is 
equal to that of quotient groups Cp(~,-,,) x Cp(,-~ of order 
p(2,-y-8), which has already been determined, since now 
0 ___ ( ~ -  ~ ' -  8) _< a. 

To summarize: (a) (b) (c) 

N(G, xG,)=(p+I)pY+s-' if 8<a, 1 <(y+8)<_a 
N (Cp~ xCpy)=(p+ l)p ~-0"+8)-~ if 8 <__ot, ot <_ (y+6)<_2ot 

N(Cp x C p , ) =  1 if 8 = y = a  

N(CexG,)=p.-, if 

The cyclic subgroups that we require to count for the 
cycle index are particular cases of the general subgroups 
above, for which y -- 0. Thus, they may be counted as 
follows (making the substitution y = 0 in the formulae 
above): 

(p + 1)p ~-t if 8 < 

p~ if 8 > t~. 

This in turn yields for the number of cyclic subgroups of 
order din: 

where 

ri p'~' ri (pj + 1)pj 8j-~, 
Pi 8i If Pj~J If 

d = H p ~  i • 
pild 

(d) (e) 

4) (h) 

(f) 

(/3 (k) (0 

Fig. 2. The 12 patterns of index 5 and stoichiometry A3B 2. The 
corresponding unit cells have basis vectors: (a)--(b) 5a, b; (c)-(d) 
a, 5b; (e)-(f) a - b , a + 4 b ;  (g)-(h) a - 2 b ,  a+3b; (i)-4J) 
a - 3b, a + 2b; (k)--(/) a - 4b, a + b; where a is vertical and b 
horizontal. 
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Table 1. K(n, m) and H(n, m) for all colour lattice groups Cyg h x Cfg x C/ of order n < 20 and relevant m; H(n, m) 
is in parentheses below where different from K(n, m) 

n h ,g f  1 2 3 4 5 6 7 8 9 10 
2 1 
3 1 
4 4,1,1 1 1 

(2) 
1,2,1 1 0 

(3) 
5 1 2 
6 1 2 3 

(3) (4) 
7 1 3 5 
8 8,1,1 1 3 7 8 

(4) (10) 
2,2,1 1 2 7 7 

(5) (12) 
1,1,2 1 0 7 7 

(7) (14) 
9 9,1,1 1 4 9 14 

(10) 
1,3,1 1 4 8 14 

(12) 
10 1 4 12 20 25 

(5) (22) (26) 
11 1 5 15 30 42 
12 12,1,1 1 5 18 40 66 

(6) (19) (43) 
3,2,1 1 4 18 38 66 

(7) (19) (45) 
13 1 6 22 55 99 
14 1 6 26 70 143 

(7) (73) 
15 1 7 30 91 200 

(31) (201) 
16 16,1,1 1 7 35 112 273 

(8) (116) 
4,2,1 1 6 35 109 273 

(9) (120) 
1,4,1 1 6 35 109 273 

(9) (122) 
2,1,2 1 4 35 105 273 

(11) (128) 
17 1 8 40 140 364 
18 18,1,1 1 8 45 168 476 

(9) (46) (172) 
2,3,1 1 8 44 168 476 

(9) (48) (172) 
19 1 9 51 204 612 
20 20,1,1 I 9 57 240 775 

(10) (245) (776) 
5,2,1 1 8 57 236 775 

(11) (249) (776) 

75 
(8O) 
72 

(84) 
132 
212 245 

(217) (246) 
333 429 

(335) 
497 715 800 

(504) (810) 
490 715 792 

(511) (820) 
490 715 792 

(511) (822) 
476 715 778 

(525) (838) 
728 1144 1430 
1026 1768 2424 

(1038) (2438) 
1024 1768 2424 

(1044) (2438) 
1428 2652 3978 
1932 3876 6288 

(1944) (6310) 
1920 3876 6268 

(1956) (6330) 

2700 
(2704) 
2697 

(2710) 
4862 
8398 

8398 

9225 
(9252) 
9200 

(9278) 

The number of isomorphic subgroups of each of these 
types  are: 

C 6 3 

C 2 x C 2 1 

C 2 3 

and thus the evaluation becomes 

K ( 1 2 , 6 ) = 8 4 - 3 x 3 - 1 x 0 - 3 x l = 7 2 .  

This time there is a total of 84 patterns for a f'mite frame, 
but 12 of the these prove to have a smaller true index 
when applied to the lattice. 

Three-dimensional ease 

The three-dimensional case involves colour lattice 
groups of the form C/g h x C/g x C/. The number of 
lattices and their breakdown by colour lattice group is 
determined by* 

d3(n/f3 g 2) 
g2 ~_, q3(clj)q2(c2j) c2 j c~3j ' 

j = l  

where d3(n/f3g 2) is the number of ways of expressing h 
as a product of three factors, any number of which may 

* This formula was misprinted in the previous paper. 
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be unity, i.e. 

h = n / f 3g  2 = clj C2j C3j, 

and q3 is the characteristic function of  the cube-free 
integers, i.e. qa(n) = 0 if n is divisible by a cube and 
qa(n) = 1 otherwise. 

Only a small fraction of these lattices have truly three- 
dimensional structures with f > 1 (Rutherford, 1993), 
and since the general formulae for the numbers of 
subgroups are complex, these cases were considered 
individually. 

Concluding remarks 

After applying Polya's  theorem, and removing by 
recursion the patterns of lower true index, we find 
K(n,  m). Table 1 contains the relevant results for indices 
up to 20. These may be combined with the number of 
lattices belonging to each colour lattice group, given in 
Tables 1 and 2 of Rutherford (1993), to give the total 
number of patterns; for example, for n = 5 and m = 2 in 
two dimensions, we have 

2tr1(5 ) = 2 x 6 = 12 

possible patterns. These are shown in Fig. 2. 
A more complex example in two dimensions is 

n = 18, m = 6. Here, there are 36 lattices belonging to 
colour lattice group CIs and 3 to  C 6 X C 3. For the former 
and m = 6, the total number of patterns is 1026, the latter 
1024. This gives as the total number: 

(36 x 1026) + (3 x 1024) = 40008. 

The number of patterns in three dimensions is consider- 
ably larger still; for example, for n = 16, m = 8, we have 

(448 x 8 0 0 ) +  (168 x 7 9 2 ) +  (28 x 7 9 2 ) +  (7 x 778) 

= 519 078. 

I wish to thank Professor Y. BiUiet for suggesting 
improvements to, and correcting some errors in, the 
original manuscript. 
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Abstract 
Apprordmations of weighting-factor functions are used 
when determining coordination numbers from differ- 
ential anomalous scattering (DAS) experiments. The 
accuracy of two single-value approximations for the 
weighting functions are tested using non-interacting 
hard-sphere models of systems that have been studied 
previously with DAS. The first approximation is an 
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average of the weighting-factor function over the 
experimental wave-vector range. The second is the 
weighting-function value at the wave vector that is 
related to a peak position in the corresponding 
differential radial distribution function (dRDF). It was 
found that the first approximation introduced up to 10% 
error into calculated coordination numbers. The second 
weighting-factor approximation introduced minimal error 
into the coordination-number calculations and is simple 
to use. 
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